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In thispaper we describe the evaluation ofa
probabilistic diagnostic system for patients with
renal mass. Three inference models: Multi-
membership Bayesian (MB), Minimal Diagnosis
(MD) and Bayesian Network (BN), and 72
patients are used to illustrate three interrelated
measures of system performance: accuracy,
reliability and discriminating power. The
inferencing strategies we tested demonstrated the
kind of trade-offs in the performance measures
that can be expected from imperfect systems.
Ultimately, the purpose and expected use of a
system should dictate the relative importance
ascribed to different aspects of system
performance.

INTRODUCTION

Medical diagnosis is one of the most
intellectually challenging processes in medical
practice. Researchers have long attempted to
reproduce this hypothetico-deductive process
through the use of intelligent computer programs
[1-41. Thanks to vigorous research in this area,
several such programs have demonstrated
themselves as potentially useful tools in clinical
consultation, medical education, quality
assurance and clinical data capturing [2,3,5-1 1].

When constructing a medical diagnostic
program, probabilistic models are often chosen
in preference to rule-based or heuristically scored
models. Several advantages are associated with
this approach. The use of probabilities allows
the system to communicate succinctly the degree
of certainty with which different diseases can be
assigned. It not only predicts the most likely
diagnosis, but also helps to clarify the relative
distance between the most likely diagnosis and
its competitors. In addition, probabilistic
prediction of diagnoses provides information that
can be used to quantitatively evaluate the
risks/benefits (utility) of different work-up and
therapeutic strategies [121. However, before the
probabilities produced by an expert system can

be utilized in these ways, the quality of the
probabilistic system has to be evaluated.

To evaluate a probabilistic system
comprehensively, we believe that three
interrelated parameters should be assessed,
namely, accuracy, reliability and discriminating
power [13,141. Accuracy describes the ability of
a system to assign the hi ghest probability to the
correct diagnosis. In this context, accuracy can
be represented as the fraction of patients
correctly diagnosed by the system or the non-
error rate (NER).

By reliability we mean the trustworthiness
of the probabilities suggested by the system.
More specifically, how confidently can we
translate these probabilities into the expected
frequencies of the events. For example, when a
reliable meteorologist says that there is a 80%
chance of rain today, the implication is that rain
will occur in eighty of a hundred days that have
weather conditions similar to today.

Another important parameter apart from
reliability and accuracy is the discriminating
power, which represents the ability of a system
to differentiate between likely and unlikely
diseases. As an example of a non-discriminative
system, consider a diagnosis suggestion list like
"Acute myocardial infarction: 95%; Pulmonary
embolus: 94%; Esophageal spasm: 92%". This
formulation would not be helpful to the
physician who is tlying to differentiate these
competing diagnoses.

We believe the three parameters discussed
above are important when evaluating a
probabilistic system because an inaccurate
system that fails to predict diagnoses correctly is
not only useless but misleading; an unreliable
system hinders the generated probabilities from
being used in decision-theoretic analysis and
reduces its transferability, and a system that
does not adequately separate the truly likely
diagnosis from its less likely competitors can be
confusing and, if believed, would carny the risk
of increasing the number of tests as physicians
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sought to differentiate the diagnoses it marked as
competitors [5,6].

In this study, we demonstrate the use of
simple statistical tests to ascertain the quality of
one diagnostic expert system running under three
different inferencing strategies, namely, Multi-
membership Bayesian (MB), Minimal Diagnosis
(MD) and Bayesian Network (BN) [15-171. The
expert system used is a probabilistic renal mass
diagnostic system (RMDS) that runs under the
three models. To provide the data set necessary
for these analyses, we recorded relevant fmdings
from 72 renal mass patients. Accuracy,
reliability and discriminating power were
assessed for these models as the measures of
system performance.

METHODS

Structure of The RMDS
The RMDS was developed using the ILIAD

shell, which is a set of tools best known as the
foundation of a large diagnostic system for
intemal medicine [3,7]. Diseases are constructed
as frames in which the prior probabilities of the
diseases and the conditional probabilities for
findings are embedded. Several mechanisms
including multi-level frames have been
implemented in this system to handle
conditionally dependent findings [18-21]. When
only single-level frames are used in the
knowledge base, the system behaves as a Multi-
membership Bayesian program [18,19].

The construction of the RMDS uses
principally the single-level structure. It consists
of 18 probabilistic disease frames, each
representing one category of renal mass (Table
1). The number of findings per frame ranges
from 9 to 23 with an average of 15. Prevalence
rates (prior probabilities) of the 18 renal mass
diseases were calculated from a large patient
database. The conditional probabilities for
findings were estimated by two senior urologists.
In a study to verify the validity of RMDS, the
diagnostic accuracy for renal mass patients was
compared between RMDS and six physicians.
The result showed that RMDS performed better
than the second-year residents and was
comparable to chief residents trained in the
urology department [22].

Table 1 The distribution of test cases into 18

Angiomyolipoma
Hemangiopericytoma
Juxtaglomerular cell tumor
Lipoma
Lymphoblastoma
Metastatic tumor
Oncocytoma
Renal cell carcinoma
Sarcoma
Wilms' tumor
2) Tumors of renal pelvis
Benign papilloma
Transitional cell carcinoma
Squamous cell carcinoma
Adenocarcinoma
3) Renal cyst
Simple cyst
Cystadenocarcinoma
4) Renal abscess
5) Xanthogranulomatous
pyelonephritis (XGP)
Total

4 (6%)
0 (0%)
0 (0%)
0 (0%)
4 (6%)
2 (3%)
4 (6%)
14 (19%)
2 (3%)
1 (1%)

3 (4%)
17 (24%)
2 (3%)
2 (3%)

4 (6%)
0 (0%)
9 (13%)
4 (6%)

72 (100%)

Patients
Seventy-two consecutive cases of renal mass

surgically diagnosed in the Chung Gung medical
center between May 1989 and April 1992 were
collected as our test cases. Findings from
categories including basic demographic data,
medical history, symptoms and signs, laboratory
data and radiological diagnostic procedures were
recorded and entered into the system. The final
diagnoses of these cases were all confirmed by
pathological examination and were used as the
gold standard diagnoses in this study. The
number of findings related to the renal mass
diagnosis ranged from 14 to 30 (average 20) per
case.

To explore the characteristics of the three
models at different stages in the diagnostic
workup, highly specific (and often expensive)
examinations including renal angiogram,
computed tomography scan and magnetic

472



resonance imaging were removed from each case
to produce a vignette. This vignette was labeled
as "Phase 1" (an average of 1.8 findings were
removed). Cases with a complete set of findings
were then labeled as "Phase 2" vignettes.

The Three Inferencing Models
RMDS is based on a set of single-level

frames constructed using the ILIAD shell. Two
of the three inferencing models studied are
standard strategies supported by the ILIAD shell.
The first of these is a Multi-membership
Bayesian model (MB). In the MB model,
diseases are treated completely independently.
Experience with such Multi-membership
Bayesian diagnostic programs suggested that
they frequently over-estimate the probabilities of
diagnoses when trying to assess a set of
competing diagnoses. Recent theoretic work
suggests that this type of model does not truly
reflect the joint distribution of the diseases and
data in the system [16,17]. Instead, this model
falsely assumes that the independence among
diseases manifesting the same findings is
maintained when those findings are known to be
present. The result is that each disease receives
all the information available to it from a shared
finding. No finding can ever be thought of as
"explained" by one member of a disease set.
Thus, the finding "bone pain or tenderness"
would still contribute a full compliment of
evidence to "renal cell carcinoma" after "renal
sarcoma" is proven.

Bayesian theorists describe the conditioned
dependence of one disease on another
(conditioned on a shared, instantiated finding) as
"d-separation". In order to simulate the effects
of d-separation in ILIAD, we have developed a
model known as the "Minimal Diagnosis" (MD).
This model selects and removes from the case a
single high probability diagnosis which explains
a large fraction of the patient findings. The
remaining, "unexplained" findings produce a
residual differential diagnosis designed to
explain the remaining findings. This process was
then repeated iteratively until all the important
findings are attributed to particular disease
hypotheses.

While the MD model provides one approach
to d-separation, it represents an extremely
aggressive way of assigning the information
associated with clinical data. Bayesian Networks
represent an alternative technique for
propagating probabilities which is thought to

handle d-separation accurately. A Bayesian
Network, also called belief network or
probabilistic causal network, is a graphical
representation of probabilistic dependencies
among variables [23]. More specifically, a
Bayesian Network is a directed acyclic graph in
which each node represents a random variable.
The arrows in the graph often denote direct
causal influences between variables, where the
strength of the influence is specified by tables of
conditional probabilities [16].

We were able to capitalize on structural
similarities between ILIAD's native knowledge
representation and Bayesian Networks to
develop general tools for converting ILIAD
knowledge base to coherent networks. We used
these tools to convert the RMDS knowledge base
from MB formulation into a BN formulation
without any additional knowledge engineering
effort. This BN formulation became the third
model ofRMDS in the performance comparison
described below.

Measurement of Performance
As described in the introduction section, we

have used accuracy, reliability and
discriminating power as parameters for
measuring the performance of these three
inferencing strategies. The non-error rate (NER),
which is the fraction of patients correctly
diagnosed by the system, was used as the index
of accuracy. McNemar's test for non-
independent proportions was used to show the
statistical significance of the NER's [24].

To measure reliability, we adopted a set of
statistics described in detail by Habbema et al.
regarding the measurement of performance in
probabilistic diagnosis [13,14]. These statistics
were arbitrarily denoted as Ql through Q5. Qi
is the average of the probabilities (over all
patients in the test population) that the program
has assigned to each patient's correct diagnosis,
while Q2 is defined as the expected value of this
average. Q2 is derived from the probabilities
assigned to all the diseases in all of the cases that
have been processed by the system. The
difference (Ql minus Q2) between observed and
e=cted mean diagnostic probabilities, called
Q3, reflects the discrepancy between the
computer's average estimate of the probability of
the disease and the expected value. Apart from
random fluctuations, Q3 averages zero for
perfect reliable systems. If the sample size is not
too small, the distribution of Q3 can be
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approximated by a normal distribution. When
Q3 is divided by Q4, which is the standard
deviation of the distribution of Q3, the result can
be treated as a Z value from the standard normal
distribution. This Z value is called Q5 in
Habbema notation. 95% of sample values of Q5
from a perfectly reliable system should be within
1.96 standard deviations from zero. If the
absolute value of Q5 is greater than 1.96, one
must reject the null hypothesis that the program
produces reliable probabilities. In this study, Q5
was used as the index of reliability.

The statistic we chose to represent
discriminating power is called the quadratic
score or Brier score [13,14,25,261. The
quadratic score combined two type of
information; it uses the deviations of Ih.
probabiliy assigd to the paient's real disease
from 1.0 and the deviation of the probabilities
s ed to the diseases that the paent d
hav from 0 to produce a measure of
discriminating ability. This value can be
calculated for individual patients. The mean
over a sample of test patients measures the
system's overall discriminating ability. This
score would be zero (perfecdy discriminative) if
the probability of correct diagnosis were always
assigned 1 and those of the wrong diagnoses
were assigned zero. In the other extreme, if the
probability of the correct diagnosis were
assigned zero and those of-the wrong diagnoses
were assigned 1 (the most unfavorable situation),
this score would be equal to D, where D is the
number of all possible diagnoses in the system.
The larger the quadratic score, the less
discriminative the system is. A repeated measure
ANOVA was performed on the quadratic scores
calculated from the probabilities assigned to each
patient by the three models to determine the
significance of differences in discriminating
power.

RESULTS

Table 1 is a list of the diagnoses in RMDS
and the distribution of the 72 test cases across
these diagnoses. Patient age ranges from 6 to 80
with an average of 59. Thirty-four (47%) out of
the 72 patients are female.

All of the 3 models (MB, MD and BN) were
compared on the basis of an equivalent
knowledge base and identical clinical
information. Table 2 shows the values of NER,
Q5 and quadratic score in the three models. In

the analysis of accuracy, all models achieved
NER accuracy greater than 61% in phase 1 and
69% in phase 2 (Figure la). No significant
difference was found among the NER of MB,
MD and BN in either Phase 1 or Phase 2. Phase
2 demonstrates a higher NER than Phase 1
because more infornation was used in Phase 2.

In the analysis of reliability, MB in phase 2
and MD in both phases resulted in absolute
values of Q5 that were greater than 1.96 (IQ51 >
1.96), and thus should be treated as producing
unreliable probabilities (Figure lb). According
to the values of Q5, only the BN model was able
to generate reliable probabilities in both phases.

Using quadratic score as an index of
discriminating power, MD and BN both showed
better discriminating power (lower quadratic
scores) than MB in both phases (Figure ic).
When we analyzed the quadratic scores using
ANOVA, both MD and BN were found to have
significantly smaller scores than MB in Phase 1
(P< 0.02) and Phase 2 (P < 0.0001), while no
significant difference was found between MD
and BN in either phase.

Table 2 The results of non-error rate (NER),
Q5 and quadratic score for the three inference

models (see also Figure 1)

Accuracy (NER)
MB MD BN

Phasel 0.639 0.611 0.611
Phase2 0.764 0.694 0.722

Reliability (Q5)
MB MD BN

Phasel -1.70* -3.20 0.91*
Phase2 -2.93 -6.56 -1.39*

Discriminating Power (quadratic score)
MB MD BN

Phasel 0.872 0.644 0.681
Phase2 1.299 0.580 0.484

MB: Multi-membership Bayesian; MD: Minimal
Diagnosis; BN: Bayesian Network
* IQ51 < 1.96
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Bar chru of NER, Q5 and quric scores for
Multi-membership Bayesian (MB), Minimal
Diagnosis (MD) and Bayesian Network (BN)
model across Phase 1 (Ph 1) and Phase 2 (Ph 2).
(See Table 2 for the exact values)

Figure la Bar chart of the accuracy measure
(NER (non-or rate); optimal: 1.0)

AcamayO)
1 n_IE*PIk2I

0.80.

0.60.

0.40.

0.20a

*0.00.

I 11
NE

L .1
BM

Figure lb Bar chart of the reliability measure
(optimal: -1.96 - +1.96)

Reli"ty(M
1.00.
0.00.
-1.00.
-2.00.
-3.00.
-4.00.
-5.00.
-6.00.
-7.00.

..

U
ND

Il
,.I I
I-
.. -1__.96

OPh1
BN

Figure Ic Bar chart of the discriminating power
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DISCUSSION

Evaluation of clinical decision support
systems is a complex issue [27,281. This paper
focuses on the analysis of system behavior using
performance statistics. We believe that when
evaluating a probabilistic diagnostic system,
reliability and discriminating power are as
important as the accuracy of the system.

In this study, these three parameters were
assessed to evaluate a probabilistic renal mass
diagnostic system under three models of
inference: Multi-membership Bayesian, Minimal
Diagnosis and a Bayesian Network fonnulation.
All the models performed comparably in the test
of accuracy. The MB model, our original
implementation of RMDS, failed to pass the
reliability test in Phase 2 and showed poor
discriminating power in both phases. MD, by
employing an aggressive d-separation algorithm,
achieved better discriminating power than MB,
yet sacrificed the ability to generate reliable
probabilities in both phases. Although BN
excelled in the tests of reliability and
discriminating power over the other two models,
the complexity of its algorithm made inferencing
much slower than the other models. It took an
average of 30 seconds to run a case in our 300
nodes Bayesian Network on a MacIntosh IIci
computer. This compares to 2 seconds for the
other two models on the same platform.

Based on these results, none of the three
models has been shown to be perfect. The goals
of a given implementation must, therefore,
dictate the approach chosen. Among the models
we evaluated, MB is not suitable for the
applications where differentiating competing
diagnoses is crucial because of its low
discriminating ability. The probabilities
generated by the MD model, due to their
unreliability, should not be used as a source for
decision-theoretic analysis where probabilities
are treated as expected frequencies. But since
both MB and MID exhibit short response time,
either one could be used in applications where
quick response is important, such as an on-line
consulting system, or they could be used together
as complementary parts of one system. The BN
model, on the other hand, is most useful when all
the qualities measured are required and where
immediate response is not necessary. An
example might be a quality control application.

Besides the overall better performance on
reliability and discriminating power, Bayesian
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networks can also generate the expected
probabilities of unknown findings. This ability
has not been studied in this experiment but could
potentially be applied in clinical information
acquisition and in clinical predictions. However,
in spite of the many potential benefits of BN
model, the exact inferencing algorithms for
Bayesian networks, such as the one we are using,
are computational intensive [171. The number of
calculations needed in these algorithms increases
exponentially with the size and complexity of the
network and thus very large Bayesian networks
are deemed computational intractable [29].
Fortunately, recent research regarding inexact
inferencing algorithms may lead to a solution for
this problem [30-33].

The RMDS we evaluated in this study is a
very narrowly defined diagnostic system that
only deals with patients having certain forms of
renal mass. The relatively small sample size and
the rarity of some of the diseases in this system
rendered analyses on individual disease
categories inaccessible. This procedure could be
of value in identifying disease-specific problems
in a system.

Given the architecture of the ILIAD shell,
where frames can be built separately and
combined together to form larger systems, it is
tempting to try assessing the performance
statistics in a more generic system with a larger
sample of patients. However, it would be
challenging to obtain a large enough
representative sample of cases for the evaluation
of such a large system. In addition, the current
algorithm used for the BN model may not be
suitable for much larger systems because of
increasing computation time.

A system that can generate probabilities of
diagnoses is appealing because of the versatility
of probability itself. But, if the probabilities
generated from such a system lack reliability and
discriminating power, they mean no more than a
list of ranking scores. The three parameters of
probabilistic systems described in this paper can
be treated as indices for the usability of such
probabilities. However, as in the case of the
models in this study, perfect performance in all
of these parameters may not be easily attainable.
Ultimately, the purpose and expected use of a
system should dictate the relative importance
ascribed to different aspects of system
perfonnance.

* This publication was supported in part by grant
number 5 ROI LM05323 from the National
Library of Medicine.
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